Bite Size C# – Extension Methods

Extension methods allow us to add methods to existing classes without changing the class’ source code, nor by inheriting from the class. Extension methods are more relevant when wanting to add a method to a class from which one cannot inherit, such as sealed classes.
Just note, you cannot use extension methods with a static class as extension methods require an instance variable for an object in order to be utilised.
Let us look at an example, here we will add an extension method to the string class, which is a sealed class (i.e. you cannot inherit from this class).

class Program
{
	static void Main(string[] args)
	{
		string sentence=  “This is something a person would say.”;

		var robotSentence = sentence.ToRobot();
		Console.WriteLine(robotSentence);
	}
}

public static class StringExtensions
{
	public static string ToRobot(this string str)
	{
		if(String.IsNullOrEmpty(str)) return str;
		var words = str.Split(‘ ‘);
		var robotStr = String.Empty;

		foreach(var word in words)
		{
			if(word.Length > 4)
			{
				robotStr+=“BEEP “;
			} else {
				robotStr+=“BOOP ”;
			}
		}

		return robotStr.Trim();
	}
}

Also note that extension methods must be non-generic static methods defined in a static class.

Bite Size C# – Extension Methods

Bite Size C# – Delegates

A delegate is a form of a type-safe function pointer. More simply put, it is an object that knows how to call a method, i.e. a reference to a method. Delegates are useful as they assist us in writing flexible and extendable applications.

Delegates are useful when using the eventing design pattern also known as the observer pattern. The eventing or observer pattern consists of an object, called the subject or publisher, which maintains a list of dependent objects, called observers or subscribers, and notifies them automatically of a state change in the subject-object by raising an event and then calling a method on the observer objects by using a delegate. We will cover this pattern in more detail when I cover events in a separate post.

For now, let us simply focus on delegates.

So, let us look at an example:


public class KillerRobot
{
	public string Name { get; set; }
}

public class KillerRobotActuator
{
	public delegate void KillerRobotActionHandler(KillerRobot robot); 	//Declare delegate which will act as a
															//signature for methods that can be
															//referenced.

	public void DoAction(string robotName, KillerRobotActionHandler actionHandler)
	{
		var robot = new KillerRobot {Name = robotName	};
		actionHandler(robot);
	}
}

public class RobotActions
{
	public void RobotTalk(KillerRobot robot)
	{
		Console.WriteLine(“{0} is Talking.”, robot.Name);
	}

	public void RobotDance(KillerRobot robot)
	{
		Console.WriteLine(“{0} is Dancing.”, robot.Name);
	}
}

class Program
{
	static void Main(string[] args)
	{
		var robotActuator = new KillerRobotActuator();
		var robotActions = new RobotActions();
		KillerRobotActuator.KillerRobotActionHandler actionHandler = robotActions.RobotTalk;
		actionHandler += robotActions.RobotDance;
		actionHandler += RobotPowerOff;

		robotActuator.DoAction(“The Geek”,actionHandler);
	}

	static void RobotPowerOff(KillerRobot robot)
	{
		Console.WriteLine(“{0} has turned off.”, robot.Name);
	}
}

So, in this basic example we have a class KillerRobotActuator which declares a delegate:

public delegate void KillerRobotActionHandler(KillerRobot robot);

Any method that complies to this signature can then be added to this delegate and in the DoAction method where the following is executed:

actionHandler(robot);

All the methods that have been added to the actionHandler will then be executed.
We can see in the Main method of the Program class that a new KillerRobotActionHandler is declared and three method references are added to it as below:

KillerRobotActuator.KillerRobotActionHandler actionHandler = robotActions.RobotTalk;
actionHandler += robotActions.RobotDance;
actionHandler += RobotPowerOff;

And then finally the DoAction method on KillerRobotActuator is executed, passing in the above declared actionHandler containing references to the three methods:

robotActuator.DoAction(“The Geek”,actionHandler);

All three the methods that are referenced by the actionHandler comply to the signature defined in the delegate declaration in the KillerRobotActuator class. i.e. a void return type and an input parameter of type KillerRobot.
It is also worth mentioning that of the methods referenced, two are contained in a separate class RobotActions and the third is a static method declared in the Program class, so methods from multiple different class locations can be added as long as they comply to the signature of the delegate declares.

 

Bite Size C# – Delegates

Bite Size C# – Generics

Generics refer to the method of creating classes and methods in a way that defers the specification of the type or types associated with the class or method until it is declared and instantiated.

What this means in plain english is that you can define a single class or method that can be utilised with multiple types, thus resulting in less and tidier code.

So let us have a look at an example. Firstly let us look at some code that is not generic. Here we have a class which consist of a list of integers, it has a default constructor as well as two methods, one to add an integer to the list and the other to return the sum of all the integers in the list.

public class KillerRoboticsIntList
{
   public List<int> IntList { get; set; }

    public KillerRoboticsIntList()
    {
        IntList = new List<int>();
    }

    public void Add(int item)
    {
        IntList.Add(item);
    }

    public int Sum()
   {
	int sum;
	foreach(int i in IntList)
	{
	 sum += i;
	}
	return sum;
   }

}

This is a very basic example and can be utilised as follows:

class Program
        {
            public static void Main()
            {
                KillerRoboticsIntList iList = new KillerRoboticsIntList();
		        iList.Add(1);
		        iList.Add(2);
		        iList.Add(3);
		        iList.Add(4);
		        int sum = iList.Sum();
                Console.WriteLine(“Sum = {0}.", sum);

            }
        }

This is very straight forward, however if I would like to use this class with a data type other than int (for example a float or a double) I would need to define a new class for each data type. This can be overcome by utilising Generics. Below is an example of how this can be implemented:

public class KillerRoboticsGenericList<T>
{
   public List GenList<T> { get; set; }

    public KillerRoboticsGenericList()
    {
        GenList = new List<T>();
    }

    public void Add(T item)
    {
        GenList.Add(item);
    }

    public T Sum()
   {
	T sum;
	foreach(T i in GenList)
	{
	 sum += i;
	}
	return sum;
   }

}

The above class can now be defined for various types as seen below:

class Program
        {
            public static void Main()
            {
              KillerRoboticsIntList<int> intList = new KillerRoboticsIntList<int>();
		        intList.Add(1);
		        intList.Add(2);
		        intList.Add(3);
		        intList.Add(4);
		        int sum = intList.Sum();
                Console.WriteLine(“Int Sum = {0}.", sum);

		        KillerRoboticsIntList<double> = new KillerRoboticsIntList<double>();
		        doubleList.Add(0.1);
		        doubleList.Add(2.2);
		        doubleList.Add(3.0);
		        doubleList.Add(1.4);
		        double dSum = doubleList.Sum();
                Console.WriteLine(“Double Sum = {0}.", dSum);

            }
        }

In some cases you might want to put a restriction on the types that can be utilised to implement a generic class of method, this can be achieved by utilising constraints. For example the class we defined above can be restricted to types that implement the IComparable interface by simple changing the first line as follows:

public class KillerRoboticsGenericList<T> where T : IComparable

Some additional examples of constraints are:

where T : Product

This restricts the type of T to an implementation of the class Product or any of its child classes.

where T : struct

This restricts the type of T to the value type struct.

where T : new()

This restricts the type of T to an object with a default constructor.

Multiple Constraints can also be appled at the same time, for example:

 
public class KillerRoboticsGenericList<T> where T : IComparable, new() 

A Generic class can be defined to utilise multiple types, for example:

 
public class KillerRoboticsGenericList<T,U,V>  

It is also worth mentioning that the default c# List class used in the above examples also utilises generics, along with all the other predefined c# collections contained in System.Collections.Generic.

I hope this post has been useful and I will be posting on some additional C# topics, such as Delegates, Lamda Expressions, LINQ, Extension Methods, etc. over the next few months.

Bite Size C# – Generics

SunFounder DIY 4-DOF Sloth Robot Kit

Today we will have a look at a robot kit created by SunFounder. The Sloth is a bi-pedal robot based on the Arduino Nano. It utilises an ultrasonic module for obstacle detection and four servos for movement.

I found the kit to be an easy and fun build that took approximately an hour to complete. SunFounder have uploaded a YouTube video that serves as detailed introductions and assembly tutorial for the robot. It covers the entire assembly process, including the process to test the ultrasonic module as well as all the servos (before assembly), which is a good thing as one of the servos included with my kit turned out to be broken, but luckily I had a replacement servo on hand.

One thing to note is that the robot utilises two 18650 batteries, which after some research turned out to be commonly used in high-end flashlights and e-cigarettes, and are relatively pricey.

The robot can also be powered through the mini USB port on the Arduino (which I did while I waited for the batteries I had ordered to be delivered).

The code for the robot can be downloaded from here on the SunFounder website. Just note that the default code did not work for me as the ultrasound module did not detect obstacles. I rectified this by replacing the following code:

void loop()
{
 	int <span class="mceItemHidden" data-mce-bogus="1"><span class="hiddenSpellError" pre="int " data-mce-bogus="1">tooclose</span></span> = 0; // Define the test times, the initial value is 0
 	for(int a=0; a&lt;5; a++)  //for is a cyclical function and its cyclic times are determined by the second condition in the bracket. Here a&lt;5, a’s initial value is 0. When a&lt;5, run the program in the bracket. After running, a becomes a++ and it means adding 1 to a’s value.
	{
		delay(50); // Delay 50ms
		int din = sonar.ping_in(); // Call the ultrasonic transducer to read the distance that ultrasonic detected.
		if (din &lt; 7 &amp;&amp; din &gt; 0) tooclose++; // The smoothing. The times add 1 when the detect distance less than 7cm and greater than 0cm.
	}

With this:

void loop()
{
	int <span class="mceItemHidden" data-mce-bogus="1"><span class="hiddenSpellError" pre="int " data-mce-bogus="1">tooclose</span></span> = 0; // Define the test times, the initial value is 0
	for(int a=0; a&lt;5; a++)  //for is a cyclical function and its cyclic times are determined by the second condition in the bracket. Here a&lt;5, a’s initial value is 0. When a&lt;5, run the program in the bracket. After running, a becomes a++ and it means adding 1 to a’s value.
	{
		delay(50); // Delay 50ms
		int din = sonar.ping(); // Call the ultrasonic transducer to read the distance that ultrasonic detected.
		if (din &lt; 750 &amp;&amp; din &gt; 0) tooclose++;
	}

I really enjoyed assembling and playing with this little robot and would definitely recommend it to anyone interested in getting started in basic robotics.

SunFounder DIY 4-DOF Sloth Robot Kit

Book Review – Robot Builder’s Bonanza

Many books have been written on the topic of robot building, ranging from very basic to extremely complex, but I have seldom come across a book that gets the balance right. Robot Builder’s Bonanza by Gordon McComb hits the sweet spot.

robotbook

The book provides a vast amount of detail on the electronics, mechanics and programming required to build a robot. Concepts like movement (for both wheeled and legged robots), sensors (to make your robot perceive its environment and conditions), the pros and cons of different Micro-controllers, as well as many other actuators (that allow the robot to change its environment in some way) are all covered. 

At the start of each section, a brief introduction to the field is given that includes explanations of key concepts (such as resistors and capacitors in the case of the electronics section) to the tools used (such as drills and screws in the case of the mechanical section). The book includes over 100 projects as examples to illustrate the concepts covered.

The book, in both print and content, is of very high quality. It is very clearly written and provides many diagrams, pictures and schematics, making it easy to understand even the more complex topics covered, for example robotic vision, robotic interpretation of sounds or the choice of which micro-controllers to use as your robots’ brain.

I would very highly recommend Robot Builder’s Bonanza to anyone interested in getting started in robot building or even someone who is currently building robots. It is not just a great book for learning the basics and getting started, but it is also a great reference guide to complex topics as well as a source of inspiration.

As far as Robotics books go this is one of the best, do yourself a favour and pick up a copy today.

Book Review – Robot Builder’s Bonanza

Bite Size C# – DataTable to RecordSet Converter

When working on legacy systems you may sometimes find that a wide variety of technologies have been used, and short of rewriting a huge amount of code the only thing that can be done is to create some functionality to map between the different technologies utilised.

I had a scenario where I had to integrate 2 legacy applications utilising different technologies for database access, one utilised ADODB and the other ADO.NET. Due to time constraints I could not change the underlying code of the systems and rather decided to create a helper class to map an ADO.NET DataTable to an ADODB RecordSet in order to facilitate the integration.

My DTtoRSconvert is a static class that resides in the Core.Data.Help namespace. It contains a static method ConvertToRecordSet that takes a DataTable as a parameter and returns a RecordSet. It also has one static private method TranslateType which is used to map between the DataTable and RecordSet Data types.

Here is the code:

using System.Data;
using System.Reflection;
using ADODB;

namespace Core.Data.Helper
{
    //Helper class that convert ADO.Net DataTables to ADODB RecordSets
    public static class DTtoRSconvert
    {
        public static Recordset ConvertToRecordSet(DataTable inTable)
        {
            var recordSet = new Recordset { CursorLocation = CursorLocationEnum.adUseClient };

            var recordSetFields = recordSet.Fields;
            var inColumns = inTable.Columns;

            foreach (DataColumn column in inColumns)
            {
                recordSetFields.Append(column.ColumnName
                                    , TranslateType(column.DataType)
                                    , column.MaxLength
                                    , column.AllowDBNull
                                          ? FieldAttributeEnum.adFldIsNullable
                                          : FieldAttributeEnum.adFldUnspecified
                                    , null);
            }

            recordSet.Open(Missing.Value
                        , Missing.Value
                        , CursorTypeEnum.adOpenStatic
                        , LockTypeEnum.adLockOptimistic, 0);

            foreach (DataRow row in inTable.Rows)
            {
                recordSet.AddNew(Missing.Value,
                              Missing.Value);

                for (var columnIndex = 0; columnIndex &lt; inColumns.Count; columnIndex++)
                {
                    recordSetFields[columnIndex].Value = row[columnIndex];
                }
            }

            return recordSet;
        }

        private static DataTypeEnum TranslateType(IReflect columnDataType)
        {
            switch (columnDataType.UnderlyingSystemType.ToString())
            {
                case "System.Boolean":
                    return DataTypeEnum.adBoolean;

                case "System.Byte":
                    return DataTypeEnum.adUnsignedTinyInt;

                case "System.Char":
                    return DataTypeEnum.adChar;

                case "System.DateTime":
                    return DataTypeEnum.adDate;

                case "System.Decimal":
                    return DataTypeEnum.adCurrency;

                case "System.Double":
                    return DataTypeEnum.adDouble;

                case "System.Int16":
                    return DataTypeEnum.adSmallInt;

                case "System.Int32":
                    return DataTypeEnum.adInteger;

                case "System.Int64":
                    return DataTypeEnum.adBigInt;

                case "System.SByte":
                    return DataTypeEnum.adTinyInt;

                case "System.Single":
                    return DataTypeEnum.adSingle;

                case "System.UInt16":
                    return DataTypeEnum.adUnsignedSmallInt;

                case "System.UInt32":
                    return DataTypeEnum.adUnsignedInt;

                case "System.UInt64":
                    return DataTypeEnum.adUnsignedBigInt;

                //System.String will also be handled by default
                default: 
                    return DataTypeEnum.adVarChar;
            }
        }
    }
}
Bite Size C# – DataTable to RecordSet Converter