A Look At The Leap Motion

The leap motion is a USB connected input device like no other. It allows user input through hand motion and gestures without any physical contact between the users’ hands and the device.

The Leap motion consists of a small flat device which is placed on the desk in front of your screen and to use it you simply hold and move your hands over it. The Leap motion contains Infra-Red Cameras and LEDs to track the position of hands as well as hand gestures.

It is a very interesting experience especially when combined with VR (I will cover this in a post at a later time).

The device can track both the user’s hands simultaneously, which results in a great and seamless experience. The included tech demos are also very impressive.

Here is a video showing the device in action:

The Leap motion is a bit of a novelty device and it’s won’t be replacing your mouse and keyboard any time soon. Also note that the sensing area in which your hands need to be isn’t that big, which is a bit restricting, however it does provide a great tool for experimentation with alternative ways of computer interaction.

I have some big plans for the device with my DIY VR headset version 2 in the future.

It is also worth mentioning that the Leap Motion prices have dropped since launch and I managed to pick one up from amazon for just over $60 when I was in the US last year.

A Look At The Leap Motion

Boards, Boards Everywhere

Currently there are numerous Arduino and Arduino compatible boards available, this post will do a quick comparison between 3 of these boards (Arduino UNO R3, Arduino Mega R3 and the Beetle which is a shrunk down version of the Arduino Leonardo) and then also a quick comparison between Arduino and Raspberry Pi Board Families.

The below picture illustrates the size difference between the Arduino boards:

Arduino Board Comparison

Here is a basic breakdown of the specifications of the three boards:

Specification UNO R3 MEGA R3 Beetle
Processor ATmega328P ATmega2560 Atmega32U4
Frequency 16 MHz 16 MHz 16 MHz
Dimensions 68.6 mm × 53.3 mm 101.6 mm × 53.3 mm 20mm X 22mm
Manufacturer Arduino Arduino DFRobot
Flash Memory 32kB 256kB 32kB
SRAM 2kB 8kB 2.5kB
Digital I/O Pins 14 54 3
Analog Pins 6 16 3

The Arduino UNO is a good starting point for anyone interested in beginning some Arduino builds, it is a good all round board for most projects and the only real constraint that I have ever run into with this board is running out of digital I/O and Analog input pins for larger projects.

The Arduino Mega overcomes this problem by offering more than double the pins. From a development and ease of use point of view it is almost identical to the UNO.

The Beetle has the least amount of pins exposed, 6 in total, 3 digital and 3 analog, so this can be a serious constraint on the nature of project it can be used for. On the other hand its tiny size makes it possible to use this board in projects where physical size is a constraint (Such as the Insect bot I posted about in an earlier post).   

Now lets look at the Raspberry Pi (Raspberry Pi 2 B to be precise) in comparison to the Arduino boards. Below are 2 Pictures showing its size in comparison to the Arduino UNO and Mega.

Pi and Mega Pi and Mega

Here is a basic specification breakdown for the Raspberry Pi (Raspberry 2 B):

Specification Raspberry Pi 2 B
Processor Cortex-A7
Frequency 900 MHz quad-core
Dimensions 85.60 mm × 56.5 mm
Manufacturer Raspberry Pi Foundation
Flash Memory MicroSD slot
SDRAM 1GB

So, which should you use? Arduino or Raspberry Pi? The answer is… It depends. Both boards have their strong and weak points. Let us look at some key distinguishing points between the two board families:

  • Price
    • The Arduino boards tend to cost a lot less than Raspberry Pi boards.
  • Memory
    • Raspberry Pi Boards have vastly more memory.
  • Processing Power
    • Raspberry Pi Boards again win this one by a huge margin.
  • Ease of Hardware interfacing
    • Arduino Boards make direct hardware interfaces with sensors and actuators much easier.
  • Online community
    • Both have a strong and thriving online community for help and support.
  • Development
    • Arduino is C only using the free Arduino IDE where as the Raspberry Pi has a variety of development options, including Python, Java, C, C++.

The Arduino makes hardware interfacing with sensors and actuators a great deal easier. However the Raspberry Pi offers vastly more memory and processing power. So which one to use depends very much on your projects’ requirements.

To put it simply there is no right or wrong choice, use what works for you or simply what you want to use.

This does however not mean that you cannot use both on a single project by setting up serial communication between the 2 boards. I am currently busy doing this on a project (see The Geek under the THE KILLER ROBOTICS FAMILY SO FAR! post).

Boards, Boards Everywhere