Bite Size C# – Generics

Generics refer to the method of creating classes and methods in a way that defers the specification of the type or types associated with the class or method until it is declared and instantiated.

What this means in plain english is that you can define a single class or method that can be utilised with multiple types, thus resulting in less and tidier code.

So let us have a look at an example. Firstly let us look at some code that is not generic. Here we have a class which consist of a list of integers, it has a default constructor as well as two methods, one to add an integer to the list and the other to return the sum of all the integers in the list.

public class KillerRoboticsIntList
{
   public List<int> IntList { get; set; }

    public KillerRoboticsIntList()
    {
        IntList = new List<int>();
    }

    public void Add(int item)
    {
        IntList.Add(item);
    }

    public int Sum()
   {
	int sum;
	foreach(int i in IntList)
	{
	 sum += i;
	}
	return sum;
   }

}

This is a very basic example and can be utilised as follows:

class Program
        {
            public static void Main()
            {
                KillerRoboticsIntList iList = new KillerRoboticsIntList();
		        iList.Add(1);
		        iList.Add(2);
		        iList.Add(3);
		        iList.Add(4);
		        int sum = iList.Sum();
                Console.WriteLine(“Sum = {0}.", sum);

            }
        }

This is very straight forward, however if I would like to use this class with a data type other than int (for example a float or a double) I would need to define a new class for each data type. This can be overcome by utilising Generics. Below is an example of how this can be implemented:

public class KillerRoboticsGenericList<T>
{
   public List GenList<T> { get; set; }

    public KillerRoboticsGenericList()
    {
        GenList = new List<T>();
    }

    public void Add(T item)
    {
        GenList.Add(item);
    }

    public T Sum()
   {
	T sum;
	foreach(T i in GenList)
	{
	 sum += i;
	}
	return sum;
   }

}

The above class can now be defined for various types as seen below:

class Program
        {
            public static void Main()
            {
              KillerRoboticsIntList<int> intList = new KillerRoboticsIntList<int>();
		        intList.Add(1);
		        intList.Add(2);
		        intList.Add(3);
		        intList.Add(4);
		        int sum = intList.Sum();
                Console.WriteLine(“Int Sum = {0}.", sum);

		        KillerRoboticsIntList<double> = new KillerRoboticsIntList<double>();
		        doubleList.Add(0.1);
		        doubleList.Add(2.2);
		        doubleList.Add(3.0);
		        doubleList.Add(1.4);
		        double dSum = doubleList.Sum();
                Console.WriteLine(“Double Sum = {0}.", dSum);

            }
        }

In some cases you might want to put a restriction on the types that can be utilised to implement a generic class of method, this can be achieved by utilising constraints. For example the class we defined above can be restricted to types that implement the IComparable interface by simple changing the first line as follows:

public class KillerRoboticsGenericList<T> where T : IComparable

Some additional examples of constraints are:

where T : Product

This restricts the type of T to an implementation of the class Product or any of its child classes.

where T : struct

This restricts the type of T to the value type struct.

where T : new()

This restricts the type of T to an object with a default constructor.

Multiple Constraints can also be appled at the same time, for example:

 
public class KillerRoboticsGenericList<T> where T : IComparable, new() 

A Generic class can be defined to utilise multiple types, for example:

 
public class KillerRoboticsGenericList<T,U,V>  

It is also worth mentioning that the default c# List class used in the above examples also utilises generics, along with all the other predefined c# collections contained in System.Collections.Generic.

I hope this post has been useful and I will be posting on some additional C# topics, such as Delegates, Lamda Expressions, LINQ, Extension Methods, etc. over the next few months.

Bite Size C# – Generics

3 thoughts on “Bite Size C# – Generics

  1. There’s a lot of “little” things that have been added to C# over the years and I’m always grateful to find those that mean I can write more compact code during my projects. This is a nice post that does well in explaining generics… great work! 🙂

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s