2021 PROJECTS

In this post, I will cover some projects I have worked on over the last few months and some projects I have planned for the future.

Bipedal Robot


I am currently busy building a bipedal robot based on this Instructables post by K.Biagini. I used his design as a foundation and added additional components and functionality (such as arms and a Piezo for sound).

I had to modify his 3D models to achieve what I wanted. Here are links to download my modified 3d Models:
– Body Extension (to fit in the extra components) – Link
– Modified Head – Link
– Arms – Link

Here is a list of all the electronic components used:
– 1x Arduino Nano
– 6x micro servos
– 2 x push buttons
– 1x mini toggle switch
– 1x 9v Battery
– 1x ultrasonic sensor (HC-SR04)
– 1x RGB LED
– 1x Piezo

These components are connected as follows:

Pinout configuration of Arduino Nano:

Pin NumberConnected Hardware
2Ultrasonic Sensor Echo Pin
3RGB LED Red Pin
4Push Button 1
5RGB LED Green Pin
6RGB LED Blue Pin
7Push Button 2
8Servo Signal Pin (Right Hip)
9Servo Signal Pin (Right Ankle)
10Servo Signal Pin (Left Hip)
11Piezo
12Servo Signal Pin (Left Ankle)
13Ultrasonic Sensor Trigger Pin
14 (A0)Servo Signal Pin (Left Arm)
15 (A1)Servo Signal Pin (Right Arm)

This is still an in-progress project and is not done, Especially from a coding perspective on the Arduino, but once I have completed this project, I will create a post containing the complete source code.

Rotary Control

I needed a rotary control for another project discussed below, so I decided to build one as per this Post on the Prusa Printers blog. It is based on an Arduino Pro Micro and uses Rotary Encoder Module.

I modified the code available on the Prusa blog to mimic keyboard WASD inputs. Turning the dial left and right will input A and D, respectively. Pressing in the dial control push button will switch to up and down inputs, thus turning the dial left and right will input W and S.
Here is the modified code (Based on Prusa Printers blog post code):

#include <ClickEncoder.h>
#include <TimerOne.h>
#include <HID-Project.h>

#define ENCODER_CLK A0 
#define ENCODER_DT A1
#define ENCODER_SW A2

ClickEncoder *encoder; // variable representing the rotary encoder
int16_t last, value; // variables for current and last rotation value
bool upDown = false;
void timerIsr() {
  encoder->service();
}

void setup() {
  Serial.begin(9600); // Opens the serial connection
  Keyboard.begin();
  encoder = new ClickEncoder(ENCODER_DT, ENCODER_CLK, ENCODER_SW); 

  Timer1.initialize(1000); // Initializes the timer
  Timer1.attachInterrupt(timerIsr); 
  last = -1;
} 

void loop() {  
  value += encoder->getValue();

  if (value != last) { 
    if (upDown)
    {
    if(last<value) // Detecting the direction of rotation
        Keyboard.write('s');
      else
        Keyboard.write('w');
    }
    else
    {
      if(last<value) // Detecting the direction of rotation
        Keyboard.write('d');
      else
        Keyboard.write('a');
    }
    last = value; 
    Serial.print("Encoder Value: "); 
    Serial.println(value);
  }

  // This next part handles the rotary encoder BUTTON
  ClickEncoder::Button b = encoder->getButton(); 
  if (b != ClickEncoder::Open) {
    switch (b) {
      case ClickEncoder::Clicked: 
        upDown = !upDown;
      break;      
      
      case ClickEncoder::DoubleClicked: 
        
      break;      
    }
  }

  delay(10); 
}

I use the rotary control with a Raspberry Pi to control a camera pan-tilt mechanism. Here is a video showing it in action:

I will cover the purpose of the camera as well as the configuration and coding related to the pan-tilt mechanism later in this post.

Raspberry Pi Projects

Raspberry Pi and TensorFlow lite

TensorFlow is a deep learning library developed by Google that allows for the easy creation and implementation of Machine Learning models. There are many articles available online on how to do this, so I will not focus on how to do this.

At a high level, I created a basic object identification model created on my windows PC and then converted the model to a TensorFlow lite model that can be run on a Raspberry pi 4. When the TensorFlow lite model is run on the Raspberry Pi, a video feed is shown of the attached Raspberry Pi camera, with green blocks around items that the model has identified with a text label of what the model believes the object is, as well as a numerical percentage which indicates the level of confidence the model has in the object identification.

I have attached a 3inch LCD screen (in a 3D printed housing) to the Raspberry Pi to show the video feed and object identification in real-time.

The Raspberry Pi Camera is mounted on a pan-tilt bracket which is controlled via two micro servos. As mentioned earlier, the pan-tilt mechanism is controlled via the dial control discussed earlier. The pan-tilt mechanism servos are driven by an Arduino Uno R3 connected to the Raspberry Pi 4 via USB. I initially connected servos straight to Raspberry Pi GPIO pins. However, this resulted in servo jitter. After numerous modifications and attempted fixes, I was not happy with the results, so I decided to use an Arduino Uno R3 to drive the servos instead and connect it to the Raspberry Pi Via USB. I have always found hardware interfacing significantly easier with Arduino and also the result more consistent.

Here is a diagram of how the servos are connected to the Arduino Uno R3:

Below is the Arduino source code I wrote to control the servos. Instructions are sent to the Arduino through serial communication via USB, and the servos are adjusted accordingly.

#include <Servo.h>
#define SERVO1_PIN A2
#define SERVO2_PIN A3

Servo servo1;
Servo servo2;
String direction;
String key;
int servo1Pos = 0;
int servo2Pos = 0;

void setup()
{
  servo1Pos = 90;
  servo2Pos = 90;
  Serial.begin(9600);
  servo1.attach(SERVO1_PIN);
  servo2.attach(SERVO2_PIN);

  servo1.write(30);
  delay(500);
  servo1.write(180);
  delay(500);
  servo1.write(servo1Pos);
  delay(500);
  servo2.write(30);
  delay(500);
  servo2.write(150);
  delay(500);
  servo2.write(servo2Pos);
  delay(500);
  Serial.println("Started");
  servo1.detach();
  servo2.detach();
}

String readSerialPort()
{
  String msg = "";
  if (Serial.available()) {
    delay(10);
    msg = Serial.read();
    Serial.flush();
    msg.trim();
    Serial.println(msg);
  }
  return msg;
}

void loop()
{
  direction = "";
  direction = readSerialPort();
  //Serial.print("direction : " + direction);
  key = "";

  if (direction != "")
  {
    direction.trim();
    key = direction;

    servo1.attach(SERVO1_PIN);
    servo2.attach(SERVO2_PIN);

    if (key == "97")
    {
      if (servo2Pos > 30)
      {
        servo2Pos -= 10;
      }
      servo2.write(servo2Pos);
      delay(500);
      Serial.print("A");
    }

    else if (key == "115")
    {
      if (servo1Pos < 180)
      {
        servo1Pos += 10;
      }
      servo1.write(servo1Pos);
      delay(500);
      Serial.print("S");
    }

    else if (key == "119")
    {
      if (servo1Pos > 30)
      {
        servo1Pos -= 10;
      }
      servo1.write(servo1Pos);
      delay(500);
      Serial.print("W");
    }

    else if (key == "100")
    {
      if (servo2Pos < 150)
      {
        servo2Pos += 10;
      }
      servo2.write(servo2Pos);
      delay(500);
      Serial.print("D");
    }

    delay(100);
    servo1.detach();
    servo2.detach();
  }

}

On the Raspberry Pi, the following Python script is used to transfer the rotary control input via serial communication to the Arduino:

# Import libraries
import serial
import time
import keyboard
import pygame

pygame.init()
screen = pygame.display.set_mode((1, 1))

with serial.Serial("/dev/ttyACM0", 9600, timeout=1) as arduino:
    time.sleep(0.1)
if arduino.isOpen():
    done = False
while not done:
    for event in pygame.event.get():
    if event.type == pygame.QUIT:
    done = True
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_s:
    arduino.write('s'.encode())

if event.key == pygame.K_w:
    arduino.write('w'.encode())

if event.key == pygame.K_a:
    arduino.write('a'.encode())

if event.key == pygame.K_d:
    arduino.write('d'.encode())
time.sleep(0.5)

arduino.Close();
print ("Goodbye")

The next thing I want to implement on this project is face tracking using TensorFlow lite with automated camera movement.

Raspberry Pi Zero W Mini PC

I built a tiny PC using a Raspberry Pi Zero W combined with a RII RT-MWK01 V3 wireless mini keyboard and a 5 inch LCD display for Raspberry Pi with a 3D printed screen stand.


It is possible to run Quake 1 on the Raspberry Pi Zero following the instructions in this GitHub, and it runs great.

Raspberry Pi Mini Server Rack

I have 3D printed a mini server rack and configured a four Raspberry Pi Cluster consisting of three raspberry Pi 3s and one Raspberry Pi 2. They are all networked via a basic five-port switch.

I am currently busy with a few different projects using the Pi cluster and will have some posts in the future going into some more details on these projects.

I developed a little Python application to monitor my different Raspberry Pis and show which ones are online (shown in green) and offline (shown in red).

The application pings each endpoint every 5 seconds, and it is also possible to click on an individual endpoint to ping it immediately. The list of endpoints is read from a CSV file, and it is easy to add additional endpoints. The UI is automatically updated on program startup with the endpoints listed in the CSV file.

Here is the Python source code of the application:

import PySimpleGUI as sg
import csv
import time
import os
from apscheduler.schedulers.background import BackgroundScheduler


def ping(address):
    response = os.system("ping -n 1 " + address)
    return response


def update_element(server):
    global window
    global layout
    response = ping(server.address)
    if response == 0:
        server.status = 1
        window.Element(server.name).Update(button_color=('white', 'green'))
        window.refresh()
    else:
        server.status = 0
        window.Element(server.name).Update(button_color=('white', 'red'))
        window.refresh()


def update_window():
    global serverList
    for server in serverlist:
        update_element(server)


class server:
    def __init__(self, name, address, status):
        self.name = name
        self.address = address
        self.status = status


serverlist = []

with open('servers.csv') as csv_file:
    csv_reader = csv.reader(csv_file, delimiter=',')
    line_count = 0
    for row in csv_reader:
        if line_count == 0:
            line_count += 1
        else:
            serverlist.append(server(row[0], row[1], 0))
            line_count += 1

layout = [
    [sg.Text("Server List:")],
]

for server in serverlist:
    layout.append([sg.Button('%s' % server.name, 
                    button_color=('white', 'orange'), 
                    key='%s' % server.name)])

window = sg.Window(title="KillerRobotics Server Monitor", 
                    layout=layout, margins=(100, 30))
window.finalize()
scheduler = BackgroundScheduler()
scheduler.start()

scheduler.add_job(update_window, 'interval', seconds=5, id='server_check_job')

while True:
    event, values = window.read()
    if event == sg.WIN_CLOSED:
        scheduler.remove_all_jobs()
        scheduler.shutdown()
        window.close()
        break
    elif event in [server.name for server in serverlist]:
        scheduler.pause()
        update_element([server for server in 
                         serverlist if server.name == event][0])
        scheduler.resume()

Raspberry Pi Pico

I ordered a few Raspberry Pi Picos on its release, and thus far, I am very impressed with this small and inexpensive microcontroller.

The Raspberry Pi Pico sells for $4 (USD) and has the following specifications:
– RP2040 microcontroller chip designed by Raspberry Pi
– Dual-core Arm Cortex-M0+ processor, flexible clock running up to 133 MHz
– 264KB on-chip SRAM
– 2MB on-board QSPI Flash
– 26 multifunction GPIO pins, including 3 analogue inputs
– 2 × UART, 2 × SPI controllers, 2 × I2C controllers, 16 × PWM channels
– 1 × USB 1.1 controller and PHY, with host and device support
– 8 × Programmable I/O (PIO) state machines for custom peripheral support
– Low-power sleep and dormant modes
– Accurate on-chip clock
– Temperature sensor
– Accelerated integer and floating-point libraries on-chip

It is a versatile little microcontroller that nicely fills the gap between Arduino and similar microcontrollers and the more traditional Raspberry Pis or similar single board computers.
I have only scratched the surface of using the Pico on some really basic projects, but I have quite a few ideas of using it on some more interesting projects in the future.

3D Printing

I ran into some problems with my 3D printer (Wanhao i3 Mini) over the last few months. The First problem was that half of the printed LCD display died, which was an annoyance, but the printer was still usable. The next issue, which was significantly more severe, was that the printer was unable to heat up the hot end.

My first course of action was to replace both the heating cartridge and the thermistor to ensure that neither of those components were to blame, and unfortunately, they were not. After some diagnostics with a multimeter on the printer’s motherboard, I determined that no power was passing through to the heating cartridge connectors on the motherboard.

I ordered a replacement motherboard and installed it, and the 3D printer is working as good as new again. When I have some more time, I will try and diagnose the exact problem on the old motherboard and repair it.
Here are photos of the old motherboard I removed from the printer:

Below are some photos of a few things I have 3D printed the last few months:

2021 PROJECTS

BOOK REVIEW – NOT ALL FAIRY TALES HAVE HAPPY ENDINGS: THE RISE AND FALL OF SIERRA ON-LINE BY KEN WILLIAMS

Not All Fairy Tales Have Happy Endings, published in 2020, is the memoir written by Ken Williams. He and his wife, Roberta Williams, founded a computer games company in the late 70s that would eventually become Sierra Online, which was for many years one of the largest and best-renowned computer game companies in the world.

The book covers the early years of Ken’s life, including how he met and married Roberta and how she became interested (and some would even say slightly obsessed) with designing computer games. From their first game, Mystery House, that was designed by Roberta and programmed by Ken, to later establishing well-known game series like the King’s Quest, Space Quest, Quest for Glory, and Leisure Suit Larry games, the book provides an insightful and thoroughly entertaining telling of the journey, especially for someone like myself who grew up playing many of these games. The book also has many stories about these games’ now-iconic designers, like Al Lowe (Game designer of, amongst other things, the Leisure Suit Larry games) and Jane Jensen (the person behind the Gabriel Knight series).

Not All Fairy Tales Have Happy Endings tells the story of Sierra Online from creation, through its rise to glory, to its eventual acquisition by CUC International, ultimately leading to its demise.

This book is a must-read for anyone who experienced and enjoyed Sierra games in the 80s and 90s. It is a fantastic read and provides a peek behind the curtain of a company that created games that left a lasting impression on so many. I highly recommended Not All Fairy Tales Have Happy Endings.

BOOK REVIEW – NOT ALL FAIRY TALES HAVE HAPPY ENDINGS: THE RISE AND FALL OF SIERRA ON-LINE BY KEN WILLIAMS

REVIEW – AMAZON KINDLE 2019 MODEL (10TH GENERATION)

The main improvement offered by the 10th generation base model Kindle over its predecessors, is the inclusion of an integrated light, which was previously only a feature of the more expensive Kindle Paperwhite and Kindle Oasis, and this is a game-changer. The inclusion of the light vastly increases the ease by which you can read the Kindle in various conditions and dramatically improves screen visibility.  

While on the topic of the screen, it is Amazon’s 6″ e-Ink glare-free display, with a PPI of 167 pixels per inch and offers a 16-level grayscale color palette, meaning even comic books and graphic novels are easily readable and details do not get lost.

The Kindle 2019 model offers a comfortable read, with text size easily resizable to user taste and allows for much quicker reading.

The Kindle supports books, comics books\graphic novels, magazines, and audiobooks across the following file formats: Kindle Format 8 (AZW3), Kindle (AZW), TXT, PDF, unprotected MOBI, PRC natively; HTML DOC, DOCX, JPEG, GIF, PNG, PMP through conversion; Audible audio format (AAX). Amazon has also vastly improved PDF support, and reading PDFs is now far less painful than in the past.

The Kindle model reviewed here comes with 8GB of non-expandable storage, enough to hold ample books and comics. However, heavy audiobook listeners might want to look at the 32GB version of the Kindle Paperwhite or Kindle Oasis instead.

A Bluetooth audio device is required (Headphone, Speaker, etc.) to listen to audiobooks, and the Kindle does allow the user to switch between reading and listening rather seamlessly.

The Kindle is entirely Wi-Fi enabled, and once online, it seamlessly integrates into the Amazon ecosystem.

Amazon claims a battery life of up to 4-weeks, obviously depending on usage and light brightness selected. I found the Kindle needed to be charged once every ten days or so with moderate usage (1-2 hours a day), and the light turned up to roughly 80% brightness.

The Kindle weighs in at 174g without a cover, making it shockingly light for its size, definitely contributing to its reading comfort.

The Kindle 2019 model retails on Amazon for $89.99 with the special offer enabled (ads show on the device lock screen) and $109.99 without the special offer. I find the special offer unintrusive, especially if you use a cover that obstructs the screen when not in use.

Amazon’s Kindle e-book readers are pretty much the de facto standard for e-book readers, with Amazon controlling over 80% of the e-book reader market, and it is easy to see why. From the ease of use to simple convenience, Amazons Kindle Devices and Ecosystems are hard to beat.    

REVIEW – AMAZON KINDLE 2019 MODEL (10TH GENERATION)

BOOK REVIEW – ZERO TO MAKER: LEARN (JUST ENOUGH) TO MAKE (JUST ABOUT) ANYTHING BY DAVID LANG

Zero to Maker (originally published in 2013) chronicles David Lang’s journey into the Maker movement and documents the learnings and many of the experiences he had along his journey.

David Lang is one of the founders of OpenROV, a low-cost remote-controlled underwater robot, and his journey of becoming a maker is tightly intertwined with this project.

As part of his journey, he visits numerous maker spaces such as Haxlr8r, Maker Faire, Noisebridge, TechSoup, and FabLabs, and explores the topic of gaining access to tools and skills through these spaces.

The book also covers a wide variety of other topics, from the new world of collaborative making and Do-It-Together to Digital Fabrication Techniques such as CAD, 3D Printing, and Laser Cutting. Another interesting subject covered is turning maker projects into businesses and the numerous challenges faced during that process. Possible ways of overcoming these challenges, such as funding your undertaking using a crowdfunding platform such as Kickstarter to how to handle larger batch manufacturing by leveraging maker spaces and their community of makers, are also examined.

The last chapter focuses on educating future generations on the skills and mindset involved in making as well as the numerous benefits associated therewith. Many great initiatives currently underway at numerous schools and other institutions teaching children how to make is covered, and it is a very inspiring read.

The book is a fascinating read that gives some good insight into the maker movement at a high level.  However, It does not provide detailed instructions on any of the skills explored, and if that is your expectation coming in, you will leave disappointed. I recommend Zero to Maker as a light, informative read and found it a pleasant way of spending a few afternoons.

BOOK REVIEW – ZERO TO MAKER: LEARN (JUST ENOUGH) TO MAKE (JUST ABOUT) ANYTHING BY DAVID LANG

REVIEW – COOLER MASTER MM710 PRO-GRADE GAMING MOUSE WITH HONEYCOMB SHELL AND ULTRAWEAVE CABLE

The Cooler Master MM710 is an ultra-light gaming mouse in the same vein of the now famous Glorious Model O mouse. It is currently listed on Amazon at around the $50 price-point, making it a fair bit less expensive than the Glorious Model O. It weighs 53 grams and as someone who usually prefers a heavier mouse, it feels completely weightless.
The Honeycomb shell has a very comfortable ergonomic shape, and the ultraweave cable combined with its ultra smooth PTFE feet makes using the mouse absolutely effortless.

The mouse pictured below is the matte black option, however, matte white, gloss black and gloss white options are also available.

Here is a technical specification breakdown of the MM710:

MM710
Year Released 2019
DPI 16000dpi
Buttons 6
Connectivity Wired USB
Weight 53g
Sensor Pixart Optical
Additional Features

Ultra-Lightweight

Ultraweave cable

Omron Switches

The MM710 was the first ultra-lightweight gaming mouse I have tried, and I found using it very comfortable and precise, saying that I am not quite ready to give up the Logitech G603 as my daily driver as I still find it more comfortable. A large part of this relates to the muscle memory I have developed by using a heavier mouse for many years now, and it will take time to get used to such a lightweight mouse.
The MM710 is an excellent product at a very reasonable price, and it is worth considering if you are looking for a lightweight mouse.

REVIEW – COOLER MASTER MM710 PRO-GRADE GAMING MOUSE WITH HONEYCOMB SHELL AND ULTRAWEAVE CABLE

3D PRINT FINISHING

When a 3D print completes printing, it seldom looks like a refined and finished item, from support material that needs to be removed to rough edges that need to be smoothed, quite a bit of work is required to make a 3D print look acceptable.

Here is a quick guide of how I finish my 3D prints to look less like 3D printed items and more like professionally produced commercial products.

Let us first look at the tools I use in the finishing process:

IMG_1747

Wire Cutting Pliers and Long Nose Pliers – These are useful when removing support material from 3D prints.

IMG_1757

Wire Brushes – Perfect for a first pass cleanup on newly printed items to remove any stringing and excess material.

IMG_1754

Needle Files – Useful for smoothing rough spots on prints, especially in small confined areas.

IMG_1761

Craft Knives – To remove any stubborn unwanted material from 3D prints.

IMG_1765

Model Sanding Block – For standing confined areas of 3D prints.

IMG_1770

Heated 3D Print Finishing Tool – Perfect for removing stringing and extra material from 3D prints.

IMG_1782

Sand Paper – Used for general smoothing of 3D prints. It is best to wet sand 3D prints as it prevents the print from melting and getting ruined by the heat created from sanding friction.

IMG_1775

Wood Filler – Used to fill any unwanted gaps and holes in 3D prints.

IMG_1793

Spray Paint Primer – This is used to prime 3D prints for painting. Priming also hides small imperfections on 3D prints. Use a primer that is plastic friendly.

IMG_1779

Model Paint and Brushes – I like Tamiya model paint and brushes, but any model paint supplies should work great.

Now let us look at the finishing process.

Step 1: Select a model and 3D print it.

It is very important to note that the better your 3D printer is maintained and configured, the better the end results will be. Here is an example of the same model 3D printed and finished. The first was printed before I replaced my hot end and did some basic maintenance on my 3D printer (the nozzle was worn, and the heater cartridge started giving issues, I also tightened the belts). The second was printed after I completed the replacement and maintenance.

IMG_1691

The print lines in the first print are clearly visible, even after sanding, while the second model has a smooth finish even with minimal sanding.

Step 2: Remove support material, initial sanding, and filler.

Using wire brushes to do a quick pass over the 3D print to remove any excess material, then sand model using wet sanding method (using sandpaper and water). When sanding the 3D print, start standing with coarse-grit sandpaper (60 grit) and work down to a finer grit (220 grit). Finally, fill any gaps using wood filler.

Step 3: Final Sanding.

When the wood filler has dried, go over the print one final time with very fine grit sandpaper (400 grit).

Step 4: Priming the 3D print

When spraying the 3D print with primer, it is important to hold the spray can at least 30cm away from the 3D print and do long even passes over the model, starting and ending each pass to the side of the 3D print and not directly on the print as it will result in droplets forming.

Step 5: Painting the 3D print

IMG_1601

After the primer has completely dried, it is time to paint the model as desired. Using a wethering technique like black-washing brings out the detail of 3d prints amazingly. Black-washing is done by mixing black (or dark color) paint with some paint thinners, then painting all over the model, putting particular focus on getting the paint into all the nooks and crannies on the print. Then finally wiping away most of the paint with some paper towel. This gives the model a weathered realistic look.

Step 6: Done!

And finally, display your newly created item with pride.

3D PRINT FINISHING

MOVIE REVIEW – MAKER: A DOCUMENTARY ON THE MAKER MOVEMENT

MakerMovie

Maker is a documentary film directed by Mu-Ming Tsai that focuses on the maker movement and the wide variety of topics it entails, such as 3D printing, electronics, biotech, etc.

Numerous interviews with different individuals within the movement are shown and clearly shows the passion they all have. And the film really presses the message across of getting people away from being consumers and becoming makers.

Throughout the documentary, the filmmakers visit various maker spaces and even one biotechnology maker space, and it very interesting to see the facilities on offer.

Two companies formed out of the maker movement, Pebble smartwatches, and OpenROV are also visited, and both illustrate how it is possible to establish companies on the principles of the maker movement.

The film also examines Crowdfunding and how it can provide the financial means for anyone to turn their creations into a consumer product and a successful company.
As an avid supporter of the maker movement, I thoroughly enjoyed the film, and it is an excellent mechanism to introduce people to what the maker movement is. I highly recommend this film.

MOVIE REVIEW – MAKER: A DOCUMENTARY ON THE MAKER MOVEMENT

LEARNING PYTHON AND DEVELOPING A GAME

Screen

As I mentioned in my Surviving Lockdown post, I started upskilling on Python, and when upskilling on a new programming language, I usually do a project to build on and enforce the things I am learning.

For my Python-based project, I decided to use PyGame to develop a small game. One piece of advice I can offer when developing a game is that it is better to develop a small and basic game that you finish than a large and ambitious game you never complete. I believe everyone who has tried some form of game development has at least one over-ambitious project they never completed, so it is better to start small.

The game I developed is called “Space Octopus Invasion” and here is a video of the game in action:

The tools and resources I used in the development process are as follows:

  • Trello
    I used Trello for task tracking and planning.
    trello
  • PyCharm
    PyCharm is my favorite Python IDE developed by JetBrains, and it offers a free community edition.
    pycharm
  • PyInstaller 
    A great utility to package a python application into an executable file.
  • InstallForge 
    A free installer maker that allows you to create a professional-looking setup wizard to install your game.
  • GameDevMarket.net
    I am not an artistically inclined person, and typically I use art, sound, and music assets when developing a game, I recommend GameDevMarket.net as they have a great selection of assets available.

The Installer for the game can be downloaded here: Installer.

And the source code can be downloaded here: Source Code.

LEARNING PYTHON AND DEVELOPING A GAME

MOVIE REVIEW – INDIE GAME: THE MOVIE

indie-game-the-movie

Indie Game: The Movie is a Documentary Film initially released in 2012. It takes a look at the Indie Game industry and follows the creators of three successful indie games at various stages of the game development process.

The main indie games followed throughout the film are Super Meat Boy developed by Edmund McMillen and Tommy Refenes, Braid created by Jonathan Blow, and finally, Fez created by Phil Fish.

Around 2008 a surge in the number of indie games released into the market started, mainly due to the rise of digital distribution channels, which removed the barrier of entry related to physical distribution indie developers struggled to overcome in the past. This growth in the indie games released has resulted in a healthy and robust indie game industry today, filled with many passionate and driven people chasing their dreams.

The film features numerous interviews with these individuals throughout the development process and gives incredible insight into the enormous passion, sacrifices made, and challenges faced by Indie Game Developers. Throughout the numerous conversations with these indie game developers, one thing becomes abundantly clear, and that is that the games they work on are far more than simple games, but rather a way of deep and meaningful self-expression, sharing a part of themselves and exposing personal vulnerabilities.

Indie Game: The Movie is a must-see film for anyone interested in the video game industry or game development in general, and it is one of the best films on the topic.

MOVIE REVIEW – INDIE GAME: THE MOVIE

BOOK REVIEW – BATMAN: THE LONG HALLOWEEN

IMG_1290

Batman: The Long Halloween is a 13 issue comic book series that was initially released between 1996 and 1997. It was written by Jeph Loeb with artwork done by Tim Sake.

The story in The Long Halloween takes place at a time when Batman was still relatively new and inexperienced in his crime-fighting career. In the Story, Batman, with the assistance of Commissioner Jim Gordon and District Attorney Harvey Dent hunt for a killer who kills on notable holidays, such as Halloween, Christmas, New Years, Mother’s day and so on.

Various members of Batman’s Rogues gallery make an appearance including the Joker, Poison Ivy, Scarecrow, and Catwoman, to name a few, and the story also covers the transformation of Harvey Dent into Two-face.

Batman: The Long Halloween is widely considered one of the definitive Batman stories, but saying that it is not one of my favorites as there are numerous plot holes and logic leaps that I find detracts from the overall story.

It is still a very enjoyable read, however, if someone is interested in getting started in the Batman comic series, I would instead suggest Batman: Hush or Batman: Year One as a better starting point.

BOOK REVIEW – BATMAN: THE LONG HALLOWEEN